Financial support from the European Community Commission under contract N. SC1000657 is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: CF1097). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435– 436.
- Belletti, D., Ugozzoli, F., Cantoni, A. & Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220. Internal Reports 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
- Caubère, P. (1974). Acc. Chem. Res. 7, 301-308.
- Caubère, P. (1978). Top. Curr. Chem. 73, 50-124.
- Caubère, P. (1991). Rev. Heteroat. Chem. 4, 78-139.
- Caubère, P. (1993). Chem. Rev. 93, 2317-2334.
- Caubère, P. & Guillaumet, G. (1972). Bull. Soc. Chim. Fr. pp. 4643-4649.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Jamart-Grégoire, B., Léger, C. & Caubère, P. (1990). Tetrahedron Lett.
- 31, 7599–7602. Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge
- Johnson, C. K. (1965). ORIEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Lawton, S. L. & Jacobson, R. A. (1965). The Reduced Cell and Its Crystallographic Applications. Ames Laboratory. Available from the Clearing House for Federal Scientific and Technical Information, National Bureau of Standards, US Department of Commerce, Springfield, Virginia, USA.
- Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
- Mugnoli, A. (1985). J. Appl. Cryst. 18, 183-184.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Nardelli, M. (1991a). QCPE Bull. 11, p. xvii, QCMP097.
- Nardelli, M. (1991b). PARSTCIF. Program for Creating a CIF from the Output of PARST. University of Parma, Italy.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Nardelli, M. & Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1988). J. Appl. Cryst. 21, 578–579.
- Tripos Associates Inc. (1992). SYBYL. Molecular Modelling Software. Version 6.0. Tripos Associates Inc., 1699 S. Hanley Rd., Suite 303, St. Louis, Missouri 63144–2913, USA.
- Zsolnai, L. & Pritzkow, H. (1994). ZORTEP. ORTEP modified for PC. University of Heidelberg, Germany.

Acta Cryst. (1996). C52, 2100-2102

4-(4-Chlorophenyl)-4-hydroxy-N,N-dimethyl- α , α -diphenyl-1-piperidinebutanamide N-Oxide Hydrate (Loperamide N-Oxide Hydrate)[†]

OSWALD M. PEETERS, NORBERT M. BLATON AND CAMIEL J. DE RANTER

Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium. E-mail: maurice.peeters@farm. kuleuven.ac.be

(Received 29 March 1996; accepted 7 May 1996)

Abstract

The crystal structure of the title compound, $C_{29}H_{33}Cl-N_2O_3.2.25H_2O$, has been determined. The three C— N(piperidyl) bond lengths reflect the tetracovalency of the piperidine N atom. A strong intermolecular hydrogen bond between the hydroxyl and the *N*-oxide of neighbouring molecules forms endless chains in the **b** direction of the C2/c space group. The positions of the water molecules are partially occupied.

Comment

Loperamide N-oxide, (I), is a prodrug of loperamide, a specific long-acting antidiarrhoeal drug. In order to compare the structure of loperamide N-oxide with that of loperamide itself (Germain, Declercq, Van Meersche & Koch, 1977), its crystal structure has been determined.

The conformation of the molecule and the atomic numbering scheme are given in Fig. 1. The overall conformation of (I) is very similar to that of loperamide. Corresponding torsion angles agree within 4° except for the N11—C16—C17—C18 torsion angle with values of 174.2 and -156.1 (2)° for loperamide and its *N*-oxide, respectively. The presence of the *N*-oxide lengthens the N—C bonds from a mean value of 1.468 Å in loperamide to a mean value of 1.505 Å in (I). These values agree well with the mean values of 1.471 and 1.509 Å found in 1,2-dipiperidinoethane mono-*N*-oxide

[†] Internal code of the Janssen Research Foundation: R58425.

(Jaskólski, 1987). The molecules are linked by a strong hydrogen bond between the O14 and O15 atoms forming endless chains in the **b** direction. The possible hydrogen bonds involving the H_2O molecules are summarized in Table 3.

Fig. 1. Perspective view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Experimental

Crystal data

C₂₉H₃₃ClN₂O₃.2.25H₂O $M_r = 533.58$ Monoclinic C2/c a = 17.0543 (7) Å b = 9.6959 (6) Å c = 35.025 (2) Å $\beta = 96.813 (4)^{\circ}$ $V = 5750.8 (5) Å^{3}$ Z = 8 $D_x = 1.233 Mg m^{-3}$ D_m measured by flotation in *n*-heptane/CCl₄

Data collection

Siemens P4 four-circle diffractometer $\omega/2\theta$ scans Absorption correction: empirical via ψ scans (XEMP; Siemens, 1989) $T_{min} = 0.337, T_{max} =$ 0.464 5226 measured reflections 3851 independent reflections

Refinement

Refinement on F^2 R(F) = 0.0489 Cu $K\alpha$ radiation $\lambda = 1.54184$ Å Cell parameters from 41 reflections $\theta = 11-27^{\circ}$ $\mu = 1.500$ mm⁻¹ T = 293 K Prism $0.50 \times 0.20 \times 0.10$ mm Colourless Crystal source: Janssen Research Foundation, Beerse, Belgium

3030 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0225$ $\theta_{max} = 56.74^{\circ}$ $h = -1 \rightarrow 18$ $k = -1 \rightarrow 10$ $l = -37 \rightarrow 37$ 3 standard reflections monitored every 100 reflections intensity decay: 3.5%

 $\Delta \rho_{\text{max}} = 0.33 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3}$

$wR(F^2) = 0.1407$	Extinction correction:
S = 1.057	SHELXL93 (Sheldrick,
3850 reflections	1993)
357 parameters	Extinction coefficient:
H-atom parameters not	0.00057 (6)
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0643P)^2]$	from International Tables
+ 4.9738P]	for X-ray Crystallography
where $P = (F_o^2 + 2F_c^2)/3$	(1974, Vol. IV, Tables
$(\Delta/\sigma)_{\rm max} = -0.005$	2.2B and 2.3.1)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

			,	
	x	у	z	U_{eq}
CII	0.49358 (6)	0.0675 (1)	0.59032 (2)	0.1005 (4)
C2	0.4530 (2)	0.0171 (4)	0.63160 (8)	0.066 (1)
C3	0.4391 (2)	0.1156 (3)	0.65793 (8)	0.063 (1)
C4	0.4058 (2)	0.0761 (3)	0.69033 (8)	0.0570 (9)
C5	0.3867 (2)	-0.0603(3)	0.69691 (7)	0.0515 (9)
C6	0.4019 (2)	-0.1577 (3)	0.66957 (8)	0.064 (1)
C7	0.4347 (2)	-0.1192 (4)	0.63699 (9)	0.073 (1)
C8	0.3492 (1)	-0.1016 (2)	0.73260 (7)	0.0486 (8)
C9	0.2636 (1)	-0.0497 (3)	0.72898 (7)	0.0499 (9)
C10	0.2248 (2)	-0.0770(3)	0.76459 (7)	0.0508 (9)
N11	0.2701 (1)	-0.0131(2)	0.79972 (6)	0.0474 (7)
C12	0.3530 (1)	-0.0695 (3)	0.80420 (7)	0.0527 (9)
C13	0.3938 (2)	-0.0407(3)	0.76942 (7)	0.0545 (9)
014	0.3522 (1)	-0.2472 (2)	0.73796 (6)	0.0616 (7)
015	0.2729 (1)	0.1297 (2)	0.79532 (5)	0.0528 (6)
C16	0.2284 (2)	-0.0482(3)	0.83387 (7)	0.0570 (9)
C17	0.2615 (2)	0.0302 (3)	0.87009 (7)	0.056 (1)
C18	0.2472 (2)	-0.0399(3)	0.90881 (8)	0.0560 (9)
C19	0.1579 (2)	-0.0276(3)	0.91294 (9)	0.064 (1)
020	0.1136 (1)	0.0278 (3)	0.88721 (7)	0.0870 (9)
N21	0.1283 (2)	-0.0734(3)	0.94447 (8)	0.0761 (9)
C22	0.0433 (2)	-0.0614(4)	0.9458 (1)	0.101 (2)
C23	0.1718 (2)	-0.1398 (4)	0.9776 (1)	0.091 (1)
C24	0.2935 (2)	0.0484 (3)	0.94086 (8)	0.063 (1)
C25	0.2775 (3)	0.1877 (4)	0.9425 (1)	0.090(1)
C26	0.3176 (4)	0.2726 (5)	0.9695 (1)	0.127(2)
C27	0.3753 (4)	0.2180 (7)	0.9961 (1)	0.127 (3)
C28	0.3919 (3)	0.0806 (6)	0.9954 (1)	0.111 (2)
C29	0.3513 (2)	-0.0052(4)	0.96760 (9)	0.083 (1)
C30	0.2758 (2)	-0.1888(3)	0.90703 (8)	0.059 (1)
C31	0.2257 (2)	-0.3014(3)	0.90576 (9)	0.072 (1)
C32	0.2524 (2)	-0.4332(4)	0.8994 (1)	0.098 (2)
C33	0.3286 (3)	-0.4561 (4)	0.8939 (1)	0.104 (2)
C34	0.3796 (2)	-0.3455 (4)	0.8947 (1)	0.094 (2)
C35	0.3538 (2)	-0.2151 (3)	0.9011 (1)	0.075 (1)
O36†	1/2	-0.3831(3)	3/4	0.120 (2)
O37†	1/2	-0.6670 (9)	3/4	0.207 (8)
038†	0.5053 (5)	-0.5274 (9)	0.6752 (2)	0.185 (4)
O39†	0.6135 (4)	-0.7222 (7)	0.6595 (2)	0.106 (3)
040 1	0.5907 (5)	-0.7157 (9)	0.6962 (6)	0.272 (9)

† Partial occupation (see below).

Table 2. Selected geometric parameters (Å, °)

Cl1—C2	1.745 (3)	C18-C19	1.552 (4)
C2—C3	1.368 (4)	C18—C24	1.551 (4)
C2—C7	1.376 (5)	C18—C30	1.528 (4)
C3—C4	1.382 (4)	C19—O20	1.229 (4)
C4—C5	1.388 (4)	C19—N21	1.343 (4)
C5—C6	1.391 (4)	N21—C22	1.462 (5)
C5—C8	1.524 (4)	N21—C23	1.451 (4)
C6C7	1.381 (4)	C24—C25	1.381 (5)
C8—C9	1.536 (3)	C24—C29	1.378 (4)
C8—C13	1.535 (3)	C25—C26	1.373 (6)
C8-014	1.424 (3)	C26C27	1.377 (7)

C9C10	1.503 (4)	C27—C28	1.363 (9)
C10N11	1.506 (3)	C28—C29	1.399 (6)
N11C12	1.507 (3)	C30—C31	1.383 (4)
N11O15	1.395 (3)	C30—C35	1.394 (4)
N11C16	1.502 (4)	C31—C32	1.382 (5)
C12C13	1.498 (4)	C32—C33	1.355 (6)
C16C17	1.529 (4)	C33—C34	1.379 (6)
C17C18	1.562 (4)	C34—C35	1.367 (5)
$\begin{array}{c} C11-C2-C7\\ C11-C2-C3\\ C3-C2-C7\\ C2-C3-C4\\ C3-C4-C5\\ C4-C5-C8\\ C4-C5-C8\\ C4-C5-C6\\ C6-C5-C8\\ C5-C6-C7\\ C2-C7-C6\\ C5-C6-C7\\ C2-C7-C6\\ C5-C8-O14\\ \end{array}$	120.1 (2)	C17-C18-C30	107.0 (2)
	118.7 (2)	C17-C18-C24	105.7 (2)
	121.2 (3)	C17-C18-C19	107.7 (2)
	118.8 (3)	C24-C18-C30	114.5 (2)
	121.8 (3)	C19-C18-C30	113.4 (2)
	121.1 (2)	C19-C18-C24	108.1 (2)
	117.8 (2)	C18-C19-N21	121.3 (3)
	121.1 (2)	C18-C19-N21	119.4 (3)
	120.8 (3)	C18-C19-N21	119.3 (3)
	119.6 (3)	C19-N21-C23	126.7 (3)
	110.9 (2)	C19-N21-C22	118.1 (3)
C5-C8-C13 C5-C8-C9 C13-C8-O14 C9-C8-C13 C9-C10-N11 C10-N11-C16 C10-N11-C16 C10-N11-C12 O15-N11-C16 C12-N11-C16 C12-N11-C16 C12-N11-O15	112.0 (2) 109.5 (2) 105.3 (2) 110.8 (2) 112.4 (2) 111.9 (2) 108.2 (2) 108.2 (2) 109.8 (2) 109.8 (2) 111.3 (2) 109.2 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115.2 (3) 123.1 (3) 118.9 (3) 118.0 (3) 122.1 (4) 119.4 (5) 119.9 (4) 120.3 (4) 120.3 (4) 119.5 (3) 123.3 (3) 116.6 (3) 121.4 (3)
N11—C12—C13	111.6 (2)	C31-C32-C33	120.9 (3)
C8—C13—C12	112.4 (2)	C32-C33-C34	118.8 (4)
N11—C16—C17	112.6 (2)	C33-C34-C35	120.6 (3)
C16—C17—C18	115.1 (2)	C30-C35-C34	121.7 (3)
C6C5C8O14 C5C8C9C10 O14C8C9C10 C9C10N11O15 C9C10N11C16 C10N11C16C17 N11C16C17C18	$ \begin{array}{r} 14.8 (3) \\ -175.4 (2) \\ 61.9 (3) \\ 61.5 (2) \\ -178.7 (2) \\ -170.8 (2) \\ -156.1 (2) \end{array} $	C16-C17-C18-C19 C16-C17-C18-C24 C16-C17-C18-C30 C17-C18-C30-C31 C17-C18-C24-C29 C17-C18-C19-N21	-70.8 (3) 173.8 (2) 51.4 (3) -113.1 (3) -122.5 (3) -176.9 (3)

Table 3. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	DH	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	DH···A
014—H14· · · O15 ⁱ	0.82	1.78	2.596 (2)	174
O36—H36· · ·O14	1.14	1.72	2.831 (2)	165
O37—H37···O38	1.16	1.81	2.959 (9)	172
O38—H38A···O36	0.90	2.36	2.980 (9)	126
O38—H38B····O20 ⁱ	0.91	1.98	2.852 (8)	160
O39—H39A···O38	1.18	1.66	2.74 (1)	150
O39—H39 <i>B</i> ···O15 ⁱⁱ	1.20	1.57	2.755 (7)	168
Symmetry codes: (i)	$\frac{1}{2} - x, y -$	$-\frac{1}{2}, \frac{3}{2}-z;$	ii) $1 - x, y - 1$	$\frac{3}{5} - z$.

The structure was solved using direct methods. Isotropic refinement and subsequent electron-density synthesis revealed five extra atomic peaks, two of which were at a special position. Although two positions are at a bonding distance of ca 1.40 Å and could represent a methanol molecule, the electron density in this region was finally assigned to two partially occupied H₂O molecules suggested by the hydrogen-bonding scheme. Based on the measured density, which indicates 2.25 molecules of H₂O in the asymmetric unit, and on the electron density, the O36-O40 atoms were included in the full-matrix least-squares anisotropic refinement (on F^2) with fixed site-occupation factors of 0.50, 0.25, 0.50, 0.50 and 0.50, respectively. The H atoms of the loperamide N-oxide molecule were positioned geometrically and allowed to ride on their parent atoms. The H atoms of the H₂O molecules were located from ΔF maps, except for those of O40 which could not be found.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEX2.1 (McArdle, 1994). Software used to prepare material for publication: PARST (Nardelli, 1983).

The authors thank Dr Jan Tollenaere of the Janssen Research Foundation, Beerse, Belgium, for providing a sample of loperamide *N*-oxide

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: NA1244). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Germain, G., Declercq, J.-P., Van Meersche, M. & Koch, M. H. J. (1977). Acta Cryst. B33, 942–944.
- Jaskólski, M. (1987). Acta Cryst. C43, 2391-2393.
- McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1989). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1994). XSCANS. X-ray Single Crystal Analysis Software. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 2102-2105

2-Ethyl-3-(3-pyridyl)-5(2H)-isoxazolone

KARLA FRYDENVANG, LOTTE BREHM, ROBERTO DI BIASE† AND ERIK FALCH

PharmaBiotec Research Center, Department of Medicinal Chemistry, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark. E-mail: karla@medchem.dfh.dk

(Received 15 April 1996; accepted 13 May 1996)

Abstract

The 3-isoxazoline ring in the title compound, $C_{10}H_{10}$ - N_2O_2 , adopts a flattened envelope conformation. The interplanar angle between the two ring systems is 31.71 (5)°, but the connecting single bond may indicate a certain degree of conjugation. The crystal packing is

[†] ERASMUS student from the University of Bologna, Italy.